p 9 n-Type Transverse Thermoelectrics: A Novel Type of Thermal Management Material

نویسندگان

  • YANG TANG
  • BOYA CUI
  • CHUANLE ZHOU
  • MATTHEW GRAYSON
چکیده

In this paper we review the recently identified p 9 n-type transverse thermoelectrics and study the thermoelectric properties of the proposed candidate materials. Anisotropic electron and hole conductivity arise from either an artificially engineered band structure or from appropriately anisotropic crystals, and result in orthogonal p-type and n-type directional Seebeck coefficients, inducing a non-zero off-diagonal transverse Seebeck coefficient with appropriately oriented currents. Such materials have potential for new applications of thermoelectric materials in transverse Peltier cooling and transverse thermal energy harvesting. In this paper we review general transverse thermoelectric phenomena to identify advantages of p 9 n-type transverse thermoelectrics compared with previously studied transverse thermoelectric phenomena. An intuitive overview of the band structure of one such p 9 n-material, the InAs/GaSb type-II superlattice, is introduced, and the plot of thermoelectric performance as a function of superlattice structure is calculated, as an example of how band structures can be optimized for the best transverse thermoelectric performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Driving perpendicular heat flow: (p×n)-type transverse thermoelectrics for microscale and cryogenic Peltier cooling.

Whereas thermoelectric performance is normally limited by the figure of merit ZT, transverse thermoelectrics can achieve arbitrarily large temperature differences in a single leg even with inferior ZT by being geometrically tapered. We introduce a band-engineered transverse thermoelectric with p-type Seebeck in one direction and n-type orthogonal, resulting in off-diagonal terms that drive heat...

متن کامل

Synthesis and Characterization of New Ceramic Thermoelectrics Implemented in a Thermoelectric Oxide Module

Novel thermoelectric oxides were developed, produced, and characterized to demonstrate their promising thermoelectric conversion potential in a thermoelectric converter. Four-leg thermoelectric oxide modules were fabricated by combining pand n-type oxide thermoelements made of pressed polycrystalline GdCo0.95Ni0.05O3 and CaMn0.98Nb0.02O3, respectively. In these modules, the pand n-type thermoel...

متن کامل

Eco-friendly high-performance silicide thermoelectric materials

Silicide-based thermoelectrics are examples of cost-efficient and environmentally friendly new energy materials, which can be used for power-generation applications in the range of 500–800 K. We review the research focusing on the exploration of n-typeMg2IV-based solid solutions (IV= Si, Ge and Sn) and summarize the most prominent discoveries achieved so far in their studies. Owing to their sup...

متن کامل

Identification of a Novel Arylsulfatase B Gene Mutation in Three Unrelated Iranian Mucopolysaccharidosis Type-VI Patients with Different Phenotype Severity

Background: Mucopolysaccharidosis type-VI (MPS-VI), which is inherited as an autosomal recessive trait, results from the deficiency of N-acetylgalactosamine 4-sulfatase (arylsulfatase B) activity and the lysosomal accumulation of dermatan sulfate. In this study, ARSB mutation analysis was performed on three unrelated patients who were originally from the West Azerbaijan province of Iran. Method...

متن کامل

Extracting Technical Specifications of a Solar Panel Type to Design a 10 MW Hybrid Power Plant

This paper focuses on the design of a 10 MW hybrid power plant using the technical specifications (data sheet) of an industrial solar panel. The main purpose was to find out the exact electrical properties of the solar panel specialy with conjunction to its temperature, to optimize overall output energy. We first describe the most important types of solar power plants and afterwards focus on el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015